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Porous media like air-saturated polymer foams with open cells, have a nontrivial frequency-dependent
absorption that arises due to viscous and thermal effects at the scale of the rigid frame microstructure. In order
to produce multiple scattering at ultrasonic frequencies, mesoscale scatterers are introduced in the porous
medium host. The effective wave number of such a multiscale medium should take into account the peculiar
absorption at the microscale and the multiple scattering at the mesoscale to describe precisely the propagation
of a coherent acoustic wave. For this purpose, a simple model is developed. First, an equivalent fluid model,
derived from a homogenization method, is used to describe the acoustic propagation in the host porous medium
itself. Second, the scattering by the inclusions is described with a multiple scattering approximation(indepen-
dent scattering approximation). This simple model allows to obtain the total effective wave number of the
porous medium with mesoscale scatterers. After some validating results on the multiple scattering by an array
of rigid cylinders in air, experiments on the multiple scattering by rigid cylinders embedded in a porous
medium are presented and compared to the developed simple model. Incidentally, it appears that for the host
medium itself, the equivalent fluid model is not capable to describe the high-frequency behavior whilst a
multiple scattering approach with(thin) viscous and thermal boundary layers around the scatterers is accurate
in the whole frequency range.
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The multiple scattering of classical waves in inhomoge-
neous media has been extensively studied these past 50 years
[1–7]. For elastic waves, weakly dissipative host media for
scatterers are often used: water, solid plates[8–10]. How-
ever, in the case of host media like porous absorbing mate-
rials implying a strong dissipation, the nontrivial frequency
dependent absorption that arises in such media has to be
taken into account to describe the acoustic wave propagation.
For acoustic porous materials, at long wavelengthl, i.e.,
when the latter is much larger than the characteristic dimen-
sion of the microstructure(the microscopic scale), the propa-
gation is well described by the homogenized theory of po-
rous materials[11–21], which is analogous in some respects
to the theory of electromagnetic wave propagation in dielec-
tric materials[22]. If we introduce scatterers with a mesos-
copic scale much larger than the microscopic scale in the
porous medium, the propagation can be described by a mul-
tiscale approach; the multiple scattering by the scatterers at
the mesoscale can be described by a multiple scattering ap-
proximation and takes place in a homogenized porous ab-
sorbing medium described by the above mentioned homog-
enized theory of porous materials. This regime, where
dissipation and scattering take place, has not been exten-
sively studied. Paradoxically, this latter is of real interest due
to the numerous opportunities to meet such a problem, e.g.,
in biological ultrasonics[23] and in seismics[24].

In this paper, we want to investigate the effective medium
properties when both multiple scattering and absorption ef-
fects are present. Concerning multiple scattering, several ef-
fective medium approximations have been proposed in the

literature [5]. Since our experiments are concerned with
sparse distributions of scatterers, we have chosen the so-
called independent scattering approximation(ISA) [25],
theoretically valid for low densities of randomly located
scatterers. This approximation only requires the scattering
amplitude of one scatterer in the forward direction and the
density of scatterers in the medium. Concerning the absorp-
tion, it is taken into account by considering viscous and ther-
mal effects at the microscopic scale.

In the first part, we present results from experiments at
ultrasonic frequencies in a random array of rigid cylinders
placed parallel in air. In this case, viscous and thermal effects
occur mainly in the boundary layers at the cylinder surface.
When these effects are taken into account in the ISA, it
yields a modified ISAsISAbd with a small correction to the
effective wave number. Measurements of the coherent wave
attenuation and velocity are compared to the theory. This
validates the chosen multiple scattering approximation for a
filling ratio up to 0.1 and for wavelengths ranging from 40 to
4 cylinder radius.

In the second part, the random array of rigid parallel cyl-
inders is embedded in a porous material—an air-saturated
polyurethane foam with open cells and low flow resistivity.
According to the homogenized theory, as long as the wave-
length is large compared to the characteristic microscale, this
latter material can be considered as an equivalent fluid pos-
sessing nontrivial frequency dependent absorption. Then, the
effect of the rigid cylinders on the coherent wave propaga-
tion can be taken into account using the ISA with the equiva-
lent fluid as the host medium. Comparisons of this simple
multiscale approach with measurements for two different
filling ratios of rigid cylinders are done. Results show that
the presence of scatterers has a significant effect on both the*Electronic address: vincent.tournat@univ-lemans.fr
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attenuation and phase velocity of the coherent wave. For the
highest frequencies, as confirmed by the experimental re-
sults, the equivalent fluid idealization of the host porous me-
dium is no longer completely valid and additional scattering
effects by the microstructure manifest themselves. It appears
that these effects may be taken into account in the present
multiscale description, by modeling the host medium with an
ad hocutilization of ISAb. The resulting description enables
us to accurately match the experimental data in the whole
frequency range, taking into account both aspects of absorp-
tion and scattering.

I. PRELIMINARY EXPERIMENTS AND MULTIPLE
SCATTERING APPROXIMATION ANALYSIS

A quantity that is of interest for the propagation of an
acoustic wave in a multiple scattering medium is the con-
figurationally averaged Green’s function, related to the
propagation of the coherent amplitude[5]. This function can
be written as

kGlsv,kWd =
1

k0
2svd − k2 − Ssv,kWd

, s1d

where k¯l denotes the configurational average,k0 is the

uniform-medium wave number,v the angular frequency,kW

the wave vector, andSsv ,kWd is the self-energy.

The self-energySsv ,kWd that arises because of the local
deviations of the medium wave number from the uniform-
medium valuek0, contains information about the multiple
scattering. In particular, if in a regime, the self-energy has no

kW dependence, it becomes possible to define an effective me-
dium, seen as a homogeneous medium by the coherent am-
plitude[5]. Owing to Eq.(1), the propagation of the coherent
amplitude is described by an effective wave numberke such
that

ke
2 = k0

2 − Ssvd s2d

and the problem is reduced to determining the complex self-
energy.

The independent scattering approximation assumes that
there is no correlation between the scatterers[6]. In this ap-
proximation, the self-energy, the quantity which is used to
renormalize the effective wave number of the multiple scat-
tering medium, is expressed by[25]

Ssvd = nkkW0utukW0l, s3d

where n is the density of scatterers in the medium, and

kkW0utukW0l the term of forward scattering of thet- matrix for a
single scatterer. In this section, we consider a random array
of rigid cylinders placed parallel in the air and we apply the
above theory. The governing equation of the host medium
(air) is the Helmholtz equation and two different boundary
conditions on the cylinder are considered in the model:(i)
Neumann boundary condition without absorption;(ii ) imped-
ance boundary condition with absorption.

In the case of a plane wave incident on a two-dimensional
(2D) cylindrical scatterer at rest, the acoustic pressure can be
written

psr,ud = o
m=0

+`

pm = o
m=0

+`

ims2 − dm0dfJmsk0rd

+ DmHmsk0rdgcossmud, s4d

whereDm are the scattering coefficients. Expressing the self-
energySsvd in terms of the scattering coefficientsDm, it
yields [26]

Ssvd = 4nio
m=0

+`

s2 − dm0dDm. s5d

Without absorption, the classical Neumann boundary con-
ditions for rigid scatterers are used, and the scattering coef-
ficients are given by

Dm = −
Jm8 sk0Rd
Hm8 sk0Rd

, s6d

whereR is the cylinder radius, andJm8 and Hm8 are the first
derivatives of the cylindrical Bessel and Hankel functions.

With absorption, the equivalent surface admittance can be
used to take into account the viscous and thermal effects
which occur in the boundary layers and are generally ne-
glected out. New scattering coefficientsDm including these
effects are obtained as follows. In the case of a plane wave
incident on a motionless flat surface of large heat capacity,
the equivalent surface admittanceb relates the pressure and
the normal derivative of the pressure by −ibk0p=]p/]n and
has the following form[26] (conventione−ivt):

b =
1 − i

2
k0Fsg − 1ddh + S1 −

k0'
2

k0
2 DdvG , s7d

whereg is the air specific heat ratio,dh the thermal boundary
layer thickness,dv the viscous boundary layer thickness, and
k0' the normal component of the air wave vector. Assuming
that the scatterer is cylindrical, rigid, and of large heat ca-
pacity, an expression for the admittancebm seen by a com-
ponentm of the field in Eq.(5) can be obtained by identify-
ing in Eq. (7) the normal wave numberk0' with the radial
wave numberkr. Sincekr

2=k0
2−m2/ r2, the following admit-

tance is obtained:

bm =
1 − i

2
k0Fsg − 1ddh +

m2

k0
2R2dvG . s8d

The condition to use this admittancebm is that the surface
should appear locally flat, i.e.,dh and dv!R. Applying the
mixed boundary conditions atr =R,

− ibmk0pm =
] pm

] r
, s9d

it is possible to determine the scattering coefficients:

Dm = −
Jm8 sk0Rd + ibmJmsk0Rd

Hm8 sk0Rd + ibmHmsk0Rd
. s10d
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The use of these new coefficients in the previous ISA
formula, Eq.(5), takes into account the viscous and thermal
losses at the boundaries of the scatterers. In the following,
ISAb will denote this modified ISA.

Using Eqs.(5) and(2), the effective wave numberke can
be explicitly evaluated. Eventually, the phase velocityv of
the coherent wave is

v =
v

Resked
, s11d

and the transmission coefficientA by a slab of thicknessL,
neglecting the reflections at the slab interfaces is

A = e−ImskedL. s12d

A. Long-wavelength limit

The physical consistency of the present multiple scatter-
ing approach ISAb may be checked in a nontrivial manner in
the long-wavelength limitk0R→0, by comparison with the
known high-frequency limit of the homogenized method, de-
scribed in Appendix A and denoted as the equivalent fluid
model (EFM) [20].

On the one hand, when the wavelength becomes very
large compared to the cylinder radius, Rayleigh scattering
occurs (monopole and dipole radiation). The self-energy
summation(5) may be limited tom=0,1, and theBessel and
Hankel functions in Eq.(10) may be developed using known
expansions. To the leading order ink0R the result is

ke
2 = k0

2H1 + fF1 + s1 + idS2dv

R
+ sg − 1d

dh

R
DGJ , s13d

where the filling ratiof =npR2 is defined as the specific vol-
ume of solid cylinders.

On the other hand, the EFM description may be applied to
the same problem, assuming that the wavelength is much
larger than a “coarse graining” characteristic cell size, which
smoothes out the microstructure. Then assuming in addition
that the frequency may be taken sufficiently high, so that the
boundary layers appear locally planesdv ,dh!Rd, the EFM
results can be expanded in powers of the viscous and thermal
skin depths and an exact asymptotic expansion can be writ-
ten for ke

2 [15,20,21,29]:

ke
2 = k0

2 a`F1 + s1 + idSdv

L
+ sg − 1d

dh

L8
DG , s14d

wherea`, L, andL8 are three independent geometrical pa-
rameters, described in Appendix A. To compare this result
with that of the ISAb, Eq. (13), we note that the latter is
thought to be exact only in a corresponding dilute limit. This
is because the effect of the correlations between the scatter-
ers, not included in the ISAb, will affect the higher order
terms that cannot be discarded when the concentration in-
creases. For our check of consistency, a dilute approximation
is thus to be introduced in Eq.(14). For dilute arrays of
parallel cylinders and a propagation normal to the cylinders,
the following are exact results, to the first order in the filling
ratio f [27]:

a` = 1 + f,
1

L
=

2f

R
,

1

L8
=

f

R
. s15d

Thus it is verified that, to the first order in volume fraction
f, the low frequency limit of the multiple scattering approach
sISAbd and the high frequency limit of the homogenization
approach(EFM) are the same.

B. Experiments

The sample consists of a disordered arrangement of par-
allel rigid cylinders embedded in air. The disorder is obtained
by building a roughly regular array of parallel cylinders. The
cylinder radius is 0.4 mm and the filling ratio isf .0.1. For
the ultrasonic excitation and detection, the same wide band-
width s20–200 kHzd transducers are used. The signal to
noise ratio is improved by repetitive averaging of the de-
tected signals using a digital oscilloscope. A rough estima-
tion of the separations between cylinders is about 2 mm,
which is not small compared to the wavelength
s17–1.7 mmd. Thus it is known a priori that the long-
wavelength theory(EFM) will not be capable to describe the
propagation.

An interesting quantity to plot is the transmission coeffi-
cient of the coherent amplitude through the slab sample[see
Eq. (12)]. The coherent acoustic amplitude, which propa-
gates in the sample as in an effective homogeneous medium,
is obtained experimentally by averaging the transmitted
pulse over 40 positions of the sample[8]. Notice also that the
diameter of the transducers4 cmd is not small compared to
the wavelengthss17–1.7 mmd, and this corresponds to an
additional averaging. However, it remains a part of incoher-
ent field in the averaged signal, which causes fluctuations in
the results of the experimental transmission coefficient and
the phase velocity. As the discontinuity of impedance at the
sample surfaces has a very weak effect on the transmitted
coherent amplitude for this filling ratio, the back propagating
waves in and out the sample are neglected. The transmission
coefficient is then supposed to be the attenuation of the co-
herent amplitude over the thickness of the sample[20]. In
Fig. 1, the experimental transmission coefficient is plotted
versus frequency, from 30 to 180 kHz, and compared to the
estimation of the ISA and the ISAb [Eqs. (2), (5), (6), and
(12) and Eqs.(2), (5), (10), and (12), respectively]. Notice
that the ratiodh,v /R varies in this frequency range from 1/25
to 1/80, thus ensuring the validity of the relation(8).

For both the transmission coefficient and the phase veloc-
ity of the coherent amplitude, plotted in Fig. 2, the ISA and
the ISAb fit the experimental data. The correction included
in the ISAb which takes into account the effect of the vis-
cous and thermal boundary layers is too weak compared to
the noise of the experimental data to allow direct validation.
However, a slight improvement is observed in the low fre-
quency range for both transmission coefficient and phase ve-
locity measurements.

The lower values obtained by the ISAb are due to the
viscous and thermal losses. As can be expected, the differ-
ence between the two models is more important in the low
frequencies because of the larger extent of the viscous and
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thermal boundary layers. We note that the satisfactory agree-
ment between experimental data and ISAb justifies the use
of the independent scattering approximation, up to filling ra-
tios on the order off =0.1. The ISA will be used next in the
similar problems with an equivalent fluid porous medium
replacing the air, and different kind of scatterers.

II. MULTIPLE SCATTERING IN POROUS
ABSORBING MEDIA

In this section, the problem of the propagation of acoustic
waves in a multiple scattering and absorbing porous medium
is treated(see Fig. 3). We consider a host fluid material
A—generally an equivalent fluid porous material—in which
scatterersB—fluid, equivalent fluid, or rigid—have been im-
mersed randomly and with a low density(less than 10% of
the total volume typically).

First, the different cases are treated analytically by the
multiscale approach, with scatterers given by parallel cylin-

ders(2D problem) or spheres(3D problem). Second, experi-
mental results for the attenuation and velocity of a coherent
wave in slabs of rigid cylinders placed parallel in a polymer
foam are presented and compared to the developed multi-
scale approach.

A. Multiple scattering description

According to the equivalent fluid model, the long-
wavelength sound propagation in a rigid frame porous mate-
rial is formally the same as in a fluid with complex,
frequency-dependent, densityrsvd and bulk modulusKsvd.
The precise definition and modeling of these effective quan-
tities is recalled in Appendix A. From the effective density
and bulk modulus, it is possible to determine the equivalent
fluid wave numberksvd=v /ÎKsvd /rsvd and characteristic
impedanceZsvd=ÎrsvdKsvd.

In the following, subscriptsA, B will be used to distin-
guish the quantities related to the host and scatterer materials

FIG. 1. Transmission coeffi-
cient of the coherent amplitude
through the slab of thickness
2 cm, composed of parallel rigid
cylinders of radius 0.4 mm with a
filling ratio of f .0.1. Experimen-
tal curves(Expt. 1 and Expt. 2)
are obtained with two different
couples of transducers.

FIG. 2. Phase velocity of the
coherent amplitude in the slab
composed of parallel rigid cylin-
ders of radius 0.4 mm with a fill-
ing ratio of f .0.1. Experimental
curves (Expt. 1 and Expt. 2) are
obtained with two different
couples of transducers.
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A, B. The expression of the scattering coefficients Eq.(6),
now need to be generalized by taking into account the propa-
gation in materialB and the appropriate boundary conditions
at the interface between materialA and B. As discussed in
Appendix A, the usual continuity conditions of pressure and
normal velocity still apply, with appropriate definition of the
“macroscopic” pressure and velocity. Thus, in the 2D prob-
lem, the scattering coefficients are given by(see Appendix
B)

Dm =

ZA

ZB
JmskARdJm8 skBRd − Jm8 skARdJmskBRd

Hm8 skARdJmskBRd −
ZA

ZB
HmskARdJm8 skBRd

. s16d

In the 3D problem, the scattering coefficients are(see
Appendix B)

dm =

ZA

ZB
jmskARd jm8 skBRd − jm8 skARd jmskBRd

hm8 skARd jmskBRd −
ZA

ZB
hmskARd jm8 skBRd

. s17d

Then considering a medium with a random distribution of
scatterers the self-energy is, in the frame of the independent
scattering approximation[5,25],

S2Dsvd = 4nio
m=0

+`

s2 − dm0dDm s18d

and

S3Dsvd =
4pni

kA
o
m=0

+`

s2m+ 1ddm. s19d

Using Eqs.(18) and (19), the effective wave number of the
multiple scattering and absorbing medium is then determined
in the 2D or 3D case as

ke = fkA
2 − S2Dsvdg1/2 s20d

or

ke = fkA
2 − S3Dsvdg1/2. s21d

These results can be directly applied to different problems:
fluid scatterers(like holes filled with air) in a porous me-
dium, porous scatterers in a fluid medium, and porous scat-
terers in a different porous matrix. For the case of rigid scat-
terers embedded in a porous medium, one must consider that
the characteristic impedance ratioZA/ZB vanishes and use
the simplified expressions(B9) and (B10) of the scattering
coefficients.

B. Experiments

Without resonant scattering, strongest effects of the mul-
tiple scattering in a porous medium are obtained with rigid
scatterers due to the “infinite” impedance mismatch between
the scatterers and the matrix host material. Besides, resonant
scattering is difficult to achieve due to the low quality factor
of porous absorbing media. For these reasons, rigid scatterers
have been chosen.

1. Samples and experimental setup

Samples are polymer foam slabs of 5 cm thickness in
which full metallic cylinders(1.6 mm in diameter) have been

FIG. 3. Problem under
consideration.
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embedded in a parallel manner but with disordered locations.
Values of the characteristic parameters of the polymer foam
taking place in the EFM(see Appendix A) are collected in
Table I. These parameters have been obtained by other physi-
cal or low-frequency acoustical methods and slightly opti-
mized numerically(in the range of their uncertainties) to
ensure the best fit with experiments. Two different samples
are used(denoted by sample 1 and sample 2) corresponding
to two different filling ratios of scatterers,f1.0.052 andf2
.0.024, respectively, or equivalently to the following scat-
terers densities:n1.26000 m−2 andn2.12000 m−2.

The experimental setup is identical to the one of Sec. I B.
However, the additional spatial averaging, by translating lat-
erally the samples, has not been performed. A reference sig-
nal associated to the acoustic propagation between the ultra-
sonic emitter and receivers,20 cmd in the air only is first
registered. Then, the same signal is sent to a slab made of the
porous material without the scatterers, placed between the
transducers. The received signal spectrum is used to deter-
mine the velocity dispersion curve and the transmission co-
efficient of the slab. Finally, the sample slab made of the
porous material with the embedded rigid cylinders is substi-
tuted to the previous sample. The associated velocity disper-
sion and transmission curves are thus obtained.

2. Experimental results and additional modeling

The transmission coefficient and velocity dispersion curve
for the sample 1sf1.0.052d are plotted in Figs. 4 and 5.
There exists a strong influence of the scatterers on both phase
velocity and transmission coefficient. It is especially the case
in the low-frequency part for the velocity plots and in the

intermediate frequencies for the transmission coefficient. At
low frequency, the four plotted models which are to be next
detailed fit correctly the experiments.

Due to the ultrasonic transducers low efficiency under
20 kHz and above 180 kHz, experimental data outside the
range 20–180 kHz are noisy.

The dashed thin line corresponds to the equivalent fluid
model (EFM) applied to the only porous material, using the
parameters of Table I and formulas Eqs.(A4) and (A5) to
determine the equivalent wave number. It is obvious that for
frequencies higher than,100 kHz, this model does not de-
scribe correctly the propagation in the porous material, the
transmission coefficient being overestimated. Indeed, at
these frequencies, the acoustic wavelength(,3 mm and
less) becomes comparable to the characteristic size of the
micro-structure, i.e., the size of the pores 1–2 mm. It is
knowna priori that the EFM will not be capable to describe
this regime where scattering by the microstructure of the
porous material itself takes place.

For the low frequency part of the frequency band
s20–100 kHzd where scattering by the porous material itself
does not play an important role, the immersion of the cylin-
drical rigid scatterers strongly decrease both the transmission
and the phase velocity of the coherent wave in the medium
(Figs. 4 and 5). This behavior is well described by the ana-
lytical approach developed in this paper for rigid parallel
cylinders in a porous medium, i.e., with the help of Eqs.(18)
and (20) (where the host mediumA is the EFM medium of
Table I) and Eq.(B9), for R=0.4 mm andn1=26000 m−2 (it
is important to notice thatR and n1 are directly measured
quantities and were not adjusted). This approach is plotted in
dashed thick lines and is denoted by the EFM+ISA theory.

The same analysis can be done for the experiments per-
formed with the sample 2sf2.0.025d that are plotted in
Figs. 6 and 7. The filling ratiof2 of sample 2 being less than
the filling ratio f1 of sample 1, the effect of multiple scatter-
ing by the rigid cylinders has a weaker effect on the trans-
mission by the slab and on the phase velocity. Once again,
due to the scattering by the porous material microstructure

TABLE I. Polymer foam parameters used for the computation of
the equivalent fluid model.

a` f Lsmmd L8smmd k0sm2d k08sm
2d

1.053 0.98 450 1000 1.88310−8 4310−8

FIG. 4. Transmission coeffi-
cient of the sample 1 made of a
porous material where parallel
rigid cylinders of radius R
=0.8 mm have been included with
the filling ratio f .0.052.
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itself, the EFM does not fit correctly the experimental curves
in the high frequency part of the band. In the low frequency
part of the band, the associated EFM+ISA theory(with n2
.12 000 m−2) fits perfectly the experimental deviations
from the values of the porous medium due to the presence of
the rigid cylinders.

For frequencies low enough that the wavelengths are large
compared to the intercylinder distance, the samples with em-
bedded cylinders can be presumably well described by the
EFM theory, but with renormalized values ofa` ,L ,L8.
However, in our experimental configuration for which the
acoustic wavelengths are less than 3 mm, this could only be
checked at much lower frequencies than those presented
here, because the intercylinder characteristic distance is esti-
mated to be more than 3 mm.

In order to take into account the scattering that occurs in
the porous medium itself above approximately 100 kHz, it
appears that anad hocutilization of ISAb is possible.

Exact computation of ISAb can be achieved when scat-
terers are identical and with well defined shapes. However, in

the case of polyurethane foams, scatterers are not easily iden-
tified, and it is complicated to knowa priori their character-
istic size and density. We have found that it is possible to
obtain with the ISAb the effective wave number of such
media, by searching two equivalent parameters, a scatterer
radiusR and a scatterer densityn. A minimization method
between experiments and ISAb theory has been applied for
the imaginary part of the polymer foam wave number, and
givesR.7.3310−5 m andn.4.23106 m−2.

This ISAb, applied to the porous medium itself, is plotted
in Figs. 4–7 in a continuous thin line. Agreement between
experiments and ISAb is observed for the whole frequency
range. Then it is possible to substitute this ISAb new effec-
tive wave number as the matrix wave number in the ISA, in
order to describe the scattering by the additional mesoscale
scatterers. Especially for the transmission coefficient of the
sample 2 in Fig. 6, this last modification improves greatly the
matching between theory and experiments at high frequen-
cies, when scattering from both the porous medium itself and
from the imbedded rigid cylinders is strong.

FIG. 5. Phase velocity of the
coherent amplitude in the sample
1 made of a porous material where
parallel rigid cylinders of radius
R=0.8 mm have been included
with the filling ratio f .0.052.

FIG. 6. Transmission coeffi-
cient of the sample 2 made of a
porous material where parallel
rigid cylinders of radius R
=0.8 mm have been included with
the filling ratio f .0.024.
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For higher densities of scatterers, the independent scatter-
ing approximation may fail to describe the effective proper-
ties of the porous samples and other effective medium theo-
ries should be implemented, like, for instance, in Refs.
[24,30].

III. CONCLUSIONS

Modeling of multiple scattering of acoustic waves in po-
rous media, including absorption, is performed in two differ-
ent problems. In the first one(Sec. I), the microstructure of
the medium is made of scatterers with well defined shapes
(parallel rigid cylinders). The absorption is included in the
ISA through a concept of equivalent surface admittance to
take into account viscous and thermal effects. Associated ex-
periment is performed and agrees well with the ISA.

In the second problem(Sec. II), the microstructure of the
porous medium is complicated and cannot be described eas-
ily with a multiple scattering approximation. The EFM is
used to describe the acoustic propagation in the host material
and the ISA to take into account the multiple scattering by
the included mesoscale scatterers(EFM+ISA model). Ex-
periments have been performed with a porous medium(a
polymer foam) in which rigid parallel cylinders have been
immersed randomly. In the frequency range 20–100 kHz,
the developed model agrees well with the experiments.
Above ,100 kHz, scattering by the microstructure of the
host porous material itself influences the acoustic propaga-
tion. This effect is taken into account by anad hocutilization
of ISAb where an equivalent radius and an equivalent den-
sity can be found. The obtained host wave number allows us
to describe precisely the propagation(including scattering
and absorption) in the porous medium itself in the whole
frequency range of the experiment. Finally, this wave num-
ber is substituted into the description of the acoustic propa-
gation through the medium with additional mesoscale scat-
tererssISAb+ISAd, which also improves the agreement with
experiments in the whole frequency band 20–180 kHz.

Using this approach, it is possible to account at the same
time for the strong dissipation at the microscopic scale and
for the multiple scattering at the mesoscopic scale. The so-
called “high frequency” limit [20] of the homogenized
theory approach for both micro and meso scales is only a
particular case of the developed approach, corresponding to a
limited frequency band which is both “low frequency” in the
sense of scattering effects(wavelength much greater than the
characteristic micro and meso scales) and high frequency in
the sense of dissipation effects(small viscous and thermal
boundary layer thickness at the microscale).

APPENDIX A: EQUIVALENT FLUID MODEL FOR
ACOUSTIC PROPAGATION IN POROUS MEDIA

Let L be a typical averaging length of the microstructure
of a rigid frame, air-saturated, porous material, such that this
material appears homogeneous(and isotropic) at this scaleL.
When considering(in the framework of linear acoustics)
wavelength verifying the long wavelength conditionl@L, it
can be shown by spatial averaging methods that an effective
wave number appears, such that

ke
2 = k0

2 re/r0

Ke/Ka
, sA1d

wherere is a complex effective density of the air determined
by inertial and viscous interactions, andKe is a complex
effective bulk modulus of air determined by thermal ex-
changes(Ka is the adiabatic bulk modulus). Indeed, it can be
shown that in harmonic regimee−ivt, the two first order mac-
roscopic linear equations for wave propagation are

− ivresvdvW = − ¹W p, sA2d

− iv
1

Kesvd
p = − ¹W ·vW , sA3d

where vW and p are the macroscopic velocity and pressure
obtained by microscopically averaging the corresponding

FIG. 7. Phase velocity of the
coherent amplitude in the sample
2 made of a porous material where
parallel rigid cylinders of radius
R=0.8 mm have been included
with the filling ratio f .0.024.
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fields in the fluid. Equation(A2) is an effective Euler equa-
tion, which takes into account the inertial and viscous inter-
actions between solid and fluid. Equation(A3) is an effective
equation of state which takes into account the thermal ex-
changes between solid and fluid. At the open boundary be-
tween the equivalent fluid material and the air, the continuity
of the normal stress and normal flow will apply. The two
continuity conditions reduce to the usualpressure and nor-
mal velocity continuity conditions, provided the macroscopic
variables are conveniently defined: the pressure is defined as
an “air phase average” and the velocity is defined as a “total
volume average” (=f3 air phase average, wheref is the
porosity).

Simple and relatively accurate scaling functions describe
the frequency dependence ofre andKe, knowing a finite set
of geometrical parameters(f, a`, k0, L, k08, L8) associated
with the porous space. These functions have, in the general
case, the following forms[15,19]:

resvd =
r0a`

f
S1 −

1

ix
Î1 −

M

2
ixD , sA4d

Kesvd =
Ka

f
Fg − sg − 1dS1 −

1

ix8
Î1 −

M8

2
ix8D−1G−1

,

sA5d

with the following notations:

M =
8k0a`

fL2 , M8 =
8k08a`

fL82 ,

x =
va`r0k0

hf
, x8 =

vr0k08Pr

hf
.

Here,f is the porosity(ratio of the fluid volume to the total
volume), a` is the Johnson, Koplik, and Dashen tortuosity
factor [15], k0, not to be confused with the air wave number,
is Darcy’s viscous permeability,L is the Johnson, Koplik,
and Schwartz pore size parameter[21,28], k08 is the Lafarge
et al. thermal permeability[19], andL8 is the Champoux and
Allard pore size parameter[29]. Thermodynamic properties
of the saturating fluid—air—are given byr0 the ambient
density,Ka the adiabatic bulk modulus,g the specific heat
ratio, h the dynamic viscosity, and Pr the Prandtl number. In
acoustics, it is customary to use the air flow resistivitys
=h /k0, in place of the permeability. This parameter is di-
rectly measurable by means of dc air flow resistance mea-
surements.

APPENDIX B: DERIVATION OF THE SCATTERING
COEFFICIENTS FOR POROUS SCATTERERS IN POROUS

MEDIA

In order to derive the scattering coefficients of simple
shape scatterers, it is convenient to express the acoustic pres-
sure field in the appropriate coordinate system, cylindrical
for the 2D problem of cylindrical scatterers, and spherical for
the 3D problem of spherical scatterers. As in Sec. II A, we

denote by corresponding subscriptsA and B the quantities
related to the host and scatterer materials.

1. 2D problem of cylindrical scatterers

The acoustic pressure field outside the scatterer is written
as a function of the distancer to the scatterer’s center and the
angleu between the incident plane wave direction and the
observation direction:

pAsr,ud = o
m=0

+`

ims2 − dm0dfJmskArd + DmHmskArdgcossmud,

sB1d

wheredm0 is the Kronecker symbol,kA the wave number of
the matrix material,Jm and Hm the cylindrical Bessel and
Hankel functions of the first kind, andDm the scattering co-
efficients. The first term in brackets corresponds to the de-

composition of the incident plane waveeikWA·rW, and the second
to the scattered amplitude.

Inside the scatterer, the acoustic pressure field is a sum of
Bessel functions of the first kindJm with the associated am-
plitudesBm:

pBsr,ud = o
m=0

+`

imBms2 − dm0dJmskBrdcossmud. sB2d

The first boundary condition at the matrix-scatterer inter-
face r =R is the stress(or the acoustic pressure) continuity:

pAsRd = pBsRd. sB3d

The second boundary condition atr =R is the normal flux
continuity svAdr =svBdr, which gives, owing to the Euler rela-
tion applied to porous media[see Eq.(A2)],

1

rAsvd
] pA

] r
sRd =

1

rBsvd
] pB

] r
sRd. sB4d

In order to find the scattering coefficientsDm, the expres-
sion of the acoustic pressure field Eqs.(B1) and (B2) are
substituted in the two boundary conditions Eqs.(B3) and
(B4). Due to the orthogonality of the cossmud, the latter con-
ditions apply separately to the different componentsm and
yield

Dm =

ZA

ZB
JmskARdJm8 skBRd − Jm8 skARdJmskBRd

Hm8 skARdJmskBRd −
ZA

ZB
HmskARdJm8 skBRd

. sB5d

2. 3D problem of spherical scatterers

In the case of spherical embedded scatterers, the analyti-
cal development is similar. The acoustic pressure field out-
side and inside the scatterer is written in the spherical coor-
dinate system:

pAsr,ud = o
m=0

+`

ims2m+ 1df jmskArd + dmhmskArdgPmscosud,

sB6d
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pBsr,ud = o
m=0

+`

imbmjmskBrdPmscosud, sB7d

where jm and hm are the spherical Bessel and Hankel func-
tions of the first kind, andPm the Legendre polynomials of
the first kind.

With the help of the boundary conditions Eqs.(B3) and
(B4), the scattering coefficients in the 3D case are derived:

dm =

ZA

ZB
jmskARd jm8 skBRd − jm8 skARd jmskBRd

hm8 skARd jmskBRd −
ZA

ZB
hmskARd jm8 skBRd

. sB8d

In the special case of rigid scatterers, the ratioZA/ZB is set
to zero and the expressions(B5) and (B8) reduce to

Dm = −
Jm8 skARd
Hm8 skARd

, sB9d

dm = −
jm8 skARd
hm8 skARd

. sB10d
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